HDU - 6514 二维差分 + 二维前缀和

一、内容

题意:给定很多监控器,让们的范围是一个长方形,左下角为x1,y1,右上角为x2,y2, 然后又一群人来偷农作物,也给定了一个长方形的范围,问是否这些长方形能被监控器包括进去。

二、思路

  • 以m作为行数,n作为列数。由于n*m <= 1e7,所以将二维转化为一维。
  • 求一个二维前缀和, 然后判断包含的点是否等于所给区域。若相等就输出YES。
  • 二维差分:
    若x1,y1, x2,y2区域都加上p, 那么等价于 这四个点加上1,具体的可以自己画画推导推导。
     add(x1, y1, 1);
     add(x2 + 1, y2 + 1, 1);
     add(x1, y2 + 1, -1);
     add(x2 + 1, y1, -1);
    
    最后还原差分数组,类似一维差分的还原。
    	for (int i = 1; i <= m; i++) {
    		for (int j = 1; j <= n; j++) {
    			d[query(j, i)] += d[query(j - 1, i)] + d[query(j, i - 1)]
    			 - d[query(j  - 1, i - 1)];  
    		}
    	} 
    

三、代码

#include <cstdio>
#include <cstring>
const int maxn = 1e7 + 5; //n * m <= 1e7
int n, m,p ,q, d[maxn], x1, x2, y1, y2;

inline void add(int x, int y, int v) {
	if (x < 1 || y < 1 || x > n || y > m) return;
	d[(y - 1) * n + x] += v;
} 

inline int query(int x, int y) {
	if (x < 1 || y < 1 || x > n || y > m) return 0;
	return (y - 1) * n + x;
}

int main() {
	while (scanf("%d%d", &n, &m) != EOF) {
		memset(d, 0, sizeof(int) * ((n * m) + 5));
		scanf("%d", &p);
		//构造二维差分数组 
		for (int i = 1; i <= p; i++) {    
			scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
			add(x1, y1, 1);
			add(x2 + 1, y2 + 1, 1);
			add(x1, y2 + 1, -1);
			add(x2 + 1, y1, -1);
		} 
		//将有标记过的位置设置为1
		for (int i = 1; i <= m; i++) {
			for (int j = 1; j <= n; j++) {
				d[query(j, i)] += d[query(j - 1, i)] + d[query(j, i - 1)] - d[query(j  - 1, i - 1)];  
			}
		} 
		for (int i = 1; i <= m; i++) {
			for (int j = 1; j <= n; j++) {
				if (d[query(j, i)] >= 1) d[query(j, i)] = 1; 
			}
		}
		// 求二维前缀和
		for (int i = 1; i <= m; i++) {
			for (int j = 1; j <= n; j++) {
				d[query(j, i)] += d[query(j, i - 1)] + d[query(j - 1, i)]- d[query(j - 1, i - 1)];
			}
		} 
		//判断是否符合条件
		scanf("%d", &q);
		for (int i = 1; i <= q; i++) {
			scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
			int num = (x2 - x1 + 1) * (y2 - y1 + 1);
			if (num == d[query(x2, y2)] + d[query(x1 - 1, y1 - 1)] - d[query(x1 - 1, y2)] - d[query(x2, y1 - 1)]) {
				printf("YES\n");
			} else {
				printf("NO\n"); 
			} 
		}
	}	
	return 0;
}
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页