Silver Cow Party POJ - 3268 反向建图

一、内容

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: N, M, and X
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse. 

Output

Line 1: One integer: the maximum of time any one cow must walk. 

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

二、思路

  • 求x到其他点的最短路径可以直接求得。 求其他点到x的最短路径可以通过反向建图求的

三、代码

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int N = 1005;
int n, m, x, u, v, w, g[N][N], rg[N][N], d[N], rd[N];//g是正图 rg是反向建图 用于求其他点到x点的最短距离 
bool vis[N];
void djkstra(int g[N][N], int d[N]) {
	memset(d, 0x3f, sizeof(rd)); //不能用函数里面的d进行sizeof 因为那是指针 
	memset(vis, false, sizeof(vis));
	d[x] = 0;
	for (int i = 1; i <= n; i++) {
		int t = -1;
		for (int j = 1; j <= n; j++) {
			if (!vis[j] && (t == -1 || d[t] > d[j])) t = j;
		}
		vis[t] = true;
		for (int j = 1; j <= n; j++) {
			d[j] = min(d[j], d[t] + g[t][j]);
		}
	}
}
int main() {
	scanf("%d%d%d", &n, &m, &x);
	memset(g, 0x3f, sizeof(g));
	memset(rg, 0x3f, sizeof(rg));
	for (int i = 1; i <= n; i++) g[i][i] = rg[i][i] = 0;
	for (int i = 1; i <= m; i++) {
		scanf("%d%d%d", &u, &v, &w);
		g[u][v] = min(w, g[u][v]);		
		rg[v][u] = min(w, rg[v][u]); //建立反图	
	}
	//求2次djkstra
	djkstra(g, d); // 求x到其他点的最短路
	djkstra(rg, rd); //求x到其他店的最短路 
	int ans = 0;
	for (int i = 1; i <= n; i++) ans = max(ans, d[i] + rd[i]);
	printf("%d", ans); 
	return 0;
} 
相关推荐
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页